A decentralized approach for mining event correlations in distributed system monitoring


Nowadays, there is an increasing demand tomonitor, analyze, and control large scale distributed systems. Events detected during monitoring are temporally correlated, which is helpful to resource allocation, job scheduling, and failure prediction. To discover the correlations among detected events, many existing approaches concentrate detected events into an event database and perform data mining on it. We argue that these approaches are not scalable to large scale distributed systems asmonitored events grow so fast that event correlation discovering can hardly be done with the power of a single computer. In this paper, we present a decentralized approach to efficiently detect events, filter irrelative events, and discover their temporal correlations. We propose a MapReduce-based algorithm, MapReduce-Apriori, to data mining event association rules, which utilizes the computational resource of multiple dedicated nodes of the system. Experimental results show that our decentralized event correlation mining algorithm achieves nearly ideal speedup compared to centralized mining approaches. © 2012 Elsevier Inc. All rights reserved.


16 Figures and Tables

Download Full PDF Version (Non-Commercial Use)